Testing and Reporting Solar Cooker Performance

Initiated by the Test Standards Committee at the Third World Conference on Solar Cooking (Coimbatore, Tamil Nadu, India, 9 January 1997); further input from the Third Latin American Congress on Solar Cookers (La Ceiba, Atlntico, Honduras. March 2001); final development by the ASAE Solar Energy Committee SE-414 March 2002; approved by the ASAE Structures and Environment Division Standards Committee January 2003.

1 Purpose and scope
1.1 This Standard is intended to:
1.1.1 Promote uniformity and consistency in the terms and units used to describe, test, rate, and evaluate solar cookers, solar cooker components, and solar cooker operation.
1.1.2 Provide a common format for presentation and interpretation of test results to facilitate communication.
1.1.3 Provide a single measure of performance so consumers may compare different designs when selecting a solar cooker.
1.2 The scope of this Standard includes:
1.2.1 All solar powered batch-process food and water heating devices (solar cookers). Devices designed to desiccate (dryers) are not covered.
1.2.2 Within the scope of this Standard a solar cooker shall be understood to include the cooking vessel(s) together with associated supporting, heat transfer and heat retention surfaces, heat storage and transfer media and associated pumps and controls, light transmitting and reflecting surfaces, and all associated adjustments, supports, and solar locating and tracking mechanisms as may be integral parts of a particular solar cooker.

2 Normative References

3 Terminology
3.1 Absorber plate: Darkened surface converting light energy into thermal energy.
3.2 Angle, Azimuth: The angular displacement from south of the projection of beam radiation on the horizontal plane.
3.3 Angle, Zenith: The angle subtended by a vertical line to the zenith projection of beam radiation on the horizontal plane.
3.4 Beam Radiation: Solar radiation received directly from the sun without atmospheric scattering.
3.5 Box-type cooker: A solar cooker with a well-insulated volume for the cooking vessel(s), typical designs having from zero to four plane mirrors.
3.6 Concentrating-type cooker: Any of various designs characterized by multiple planes or curved reflective surfaces. Many designs lack insulated walls but have large intercept areas to compensate for their comparatively greater heat loss.
3.7 Intercept area: The sum of the reflector and aperture areas projected onto the plane perpendicular to direct beam radiation (Figure 1). For convenience, use the average beam radiation zenith angle as calculated for the entire test period.
3.8 Load: The mass of water being heated by the solar cooker.
3.9 Test: All events and data comprising the measured solar heating of water in a device intended to cook food.
3.10 Tracking: Rotating the cooker in the horizontal plane to compensate for azimuth angle changes (box-type) or following the sun in two dimensions (concentrating-type).

4 General
4.1 This Standard specifies that test results be presented as cooking power, in Watts, normalized for ambient conditions, relative to the temperature difference between cooker contents and ambient air, both as a plot and as a regression equation for no fewer than 30 total observations over three different days.
4.2 This Standard specifies that cooking power be presented as a single number found from the equation described in section 4.1 for a temperature difference of 50 °C.

5 Uncontrolled (weather) variables
5.1 Wind. Tests shall be conducted when wind is less than 1.0 m/s, measured at the elevation of the cooker being tested and within ten meters of it. Should wind exceed 2.5 m/s for more than ten minutes, discard that test data. If a wind shelter is required, 1) it shall be designed so as to not interfere with incoming total radiation and 2) the wind instrumentation shall be co-located with the cooker in the same wind shadow.
5.2 Ambient temperature. Tests should be conducted when ambient temperatures are between 20 and 35 °C.
5.3 Water temperature. Test data shall be recorded while cooking vessel contents (water) are at temperatures between 5 °C above ambient and 5 °C below local boiling temperature.
5.4 Insolation. Available solar energy shall be measured in the plane perpendicular to direct beam radiation (the maximum reading) using a radiation pyranometer. Variation in measured insolation greater than 100 W/m² during a ten-minute interval, or readings below 450 W/m² or above 1100 W/m² during the test shall render the test invalid. For convenience, the pyranometer may be fixed on the cooker at the average beam radiation zenith angle as calculated for the entire test period.

5.5 Solar zenith and azimuth angle. Tests should be conducted between 10:00 and 14:00 solar time. Exceptions necessitated by solar variability or ambient temperature shall be specially noted.

Figure 1 – Determining the intercept area. Reflector area is reflector width times its apparent height, R, and aperture area is aperture width times its apparent height, A. Apparent height is the shadow or projected height in the plane perpendicular to beam radiation of zenith angle Z.
6 Controlled (cooker) variables

6.1 Loading. Cookers shall have 7,000 grams potable water per square meter intercept area distributed evenly between the cooking vessels supplied with the cooker. If no cooking vessels are provided, inexpensive aluminum cooking vessels painted black shall be used.

6.2 Water mass. The mass of water shall be determined with an electronic balance to the nearest gram using a pre-wetted container.

6.3 Tracking. Azimuth angle tracking frequency should be appropriate to the cooker’s acceptance angle. Box-type cookers typically require adjustment every 15 to 30 minutes or when shadows appear on the absorber plate. Concentrating-type units may require more frequent adjustment to keep the solar image focused on the cooking vessel or absorber. With box-type cookers, zenith angle tracking may be unnecessary during a two hour test conducted at mid-day. Testing should be representative of local conditions, i.e; how the typical consumer is expected to use the cooker.

6.4 Temperature sensing. Water and air temperature should be sensed with thermocouples. Each thermocouple junction shall be immersed in the water in the cooking vessel(s) and secured 10 mm above the bottom, at center. Thermocouple leads should pass through the cooking vessel lid inside a thermally nonconductive sleeve to protect the thermocouple wire from bending and temperature extremes. The sleeve should be secured with 100% silicone caulk to reduce water vapor loss.

7 Test protocol

7.1 Recording. The average water temperature (C) of all cooking vessels in one cooker shall be recorded at intervals not to exceed ten minutes, and should be in units of Celsius to the nearest one tenth of a degree. Solar insolation (W/m²), ambient temperature (C), and wind speed (m/s) shall be recorded at least as frequently. Record and report the frequency of attended (manual) tracking, if any. Report azimuth angle(s) during the test. Report the test site latitude and the date(s) of testing.

7.2 Calculating cooking power. The change in water temperature for each ten-minute interval shall be multiplied by the mass and specific heat capacity of the water contained in the cooking vessel(s). This product shall be divided by the 600 seconds contained in a ten-minute interval, as:

\[P_i = \frac{(T_2 - T_1)MC_v}{600} \]

where:
- \(P_i \) = cooking power (W)
- \(T_2 \) = final water temperature
- \(T_1 \) = initial water temperature
- \(M \) = water mass (kg)
- \(C_v \) = heat capacity (4186 J/[kg·K])

7.3 Calculating interval averages. The average insolation, average ambient temperature, and average cooking vessel contents temperature shall be found for each interval.

7.4 Standardizing cooking power. Cooking power for each interval shall be corrected to a standard insolation of 700 W/m² by multiplying the interval observed cooking power by 700 W/m² and dividing by the interval average insolation recorded during the corresponding interval.

\[P_s = \frac{P_i}{I_i} \]

where:
- \(P_s \) = standardized cooking power (W)
- \(P_i \) = interval cooking power (W), as calculated in section 7.2
- \(I_i \) = interval average solar insolation (W/m²)

7.5 Temperature difference. Ambient temperature for each interval is to be subtracted from the average cooking vessel contents temperature for each corresponding interval.

\[T_d = T_w - T_a \]

where:
- \(T_d \) = temperature difference (C)
- \(T_w \) = water temperature (C)
- \(T_a \) = ambient air temperature (C)

7.6 Plotting. The standardized cooking power, \(P_s \) (W) is to be plotted against the temperature difference, \(T_d \) (C) for each time interval.

7.7 Regression. A linear regression of the plotted points shall be used to find the relationship between cooking power and temperature difference in terms of intercept a (W) and slope b (W/C) or \(P_s = a + bT_d \). No fewer than 30 total observations from three different days shall be employed. The coefficient of determination \(r^2 \) or proportion of variation in cooking power that can be attributed to the relationship found by regression should be higher than 0.75 or specially noted.

7.8 Single measure of performance. The value for standardized cooking power, \(P_s \) (W) shall be computed for a temperature difference, \(T_d \), of 50 °C using the regression relationship found according to section 7.7.

\[P_{s(50)} = 45 \text{ W} \]

NOTE: for product labeling and sales literature an independent laboratory using a statistically adequate number of trials shall determine this number. While this value, like the fuel economy rating of an automobile, is not a guarantee of performance, it provides consumers with a useful tool for comparison and product selection.

7.9 Reporting. A plot of the relationship between standardized cooking power and temperature difference shall be presented with the equation, following the example in Figure 2. The report shall also state the standardized cooking power at a temperature difference of 50 °C.

References
